 AD=AO44 912

UNCLASSIFIED

STANFORD UNIV CALIF DEPT OF OPERATIONS RESEARCH F/6 12/1

A LEAST ELEMENT THEORY OF SOLVING LINEAR COMPLEMENTARITY PROBLE==ETC(U) .

DEC 76 R W COTTLE:, J PANG NOO014=75=C~0267
TR=76=30 NL




SL6TH0 VY




A LEAST ELEMENT THEORY
OF SOLVING LINEAR COMPLEMENTARITY PROBLEMS
AS LINEAR PROGRAMS

by
Richard W. Cottle and Jong-Shi Pang

TECHNICAL REPORT 76-30
December 1976

DEPARTMENT OF OPERATIONS RESEARCH

Stanford University
Stanford, California

Research and reproduction of this report were partially supported
by National Science Foundation Grant MCS 71-03341 AO4 and Office
of Naval Research Contract N00014-75-C-0267.

Reproduction in whole or in part is permitted for any purposes
of the United States Government. This document has been approved
for public release and sale; its distribution is unlimited.




A LEAST ELEMENT THEORY
OF SOLVING LINEAR COMPLEMENTARITY PROBLEMS
AS LINEAR PROGRAMS

by

Richard W. Cottle and Jong-Shi Pang

! ABSTRACT

In a previous report [2], the authors have established a
least-element interpretation to Mangasarian's theory [5], [6] of
formulating some linear complementarity problems as linear programs.
In the present report, we extend our previous analysis to a more
general class of linear complementarity pr “'ems investigated in
Mangasarian [7]. Our purposes are (1) t onstrate how solutions
to these problems can be generated from least elements of polyhedral
sets and (2) to investigate how these ''least-element solutions" are

related to the solutions obtained by the linear programming approach

as proposed by Mangasarian. E -




A LEAST ELEMENT THEORY
OF SOLVING LINEAR COMPLEMENTARITY PROBLEMS
AS LINEAR PROGRAMS

by

Richard W. Cottle and Jong-Shi Pang

1. INTRCDUCTION

In this paper, we study the linear complementarity problem of

finding a vector x ¢ R" satisfying
(113 x>0, q+Mx >0 and x.(q+Mx) =0

where the given n-vector q and n x mn matrix M satisfy the

following three assumptions:

(M1) MX = Y + qel
(M2) r’x + sTY > 0

1
(M3) rI(X4C) + sT(Y+C) > 0 1

whre X and Y are suitable Z-matrices (i.e., real square matrices
whose off-diagonal entries are non-positive), C 1is a diagonal
matrix whose diagonal elements are the components of the vector «c,
and r, s and c¢ are some non-negative vectors. We denote problem
(1.1) by the pair (q,M). 1Its feasible set is defined as the

polyhedral set

X(q,M) = {x ¢ R" : x > 0, g+Mx > 0!
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The linear complementarity problem (g, M) with the vector g
and matrix M satisfying conditions (M1) - (M3) has recently been
studied by Mangasarian [ 7] who shows that such a problem can be

formulated as the linear program

1t
{1.2) minimize p x subjectto x>0 and g+ Mx>0
'F y ; :
where p = r + M s. Our purpose in this report is to show that this result

is related to a theory of polyhedral sets having least elements. (A vector

X belonging to a set S C Rn is said to be the least (greatest) element

of S if X< (>) x for every x ¢ S.) The method of derivation used

by Mangasarian is not based on least-element arguments. In a previous
report [ 2], the authors have applied this theory of polyhedral sets having
least elements to the particular case ¢ = 0 and established that for
every n-vector ¢, the linear complementarity problem (q, M) has a
solution which can be generated from the least element of a polyhedral set,
thus providing a least-element interpretation to the linear programming
formulation of the problem (g, M) which was initially obtained by
Mangasarian in [ 5]. In the present report, we extend our previous analysis
to the general case where c¢ is merely non-negative, as described at

the beginning of the introduction. Our purposes are (1) to establish the
least-element characterization of a solution to the linear complementarity
problem under consideration and (2) to demonstrate how this 'least-element

solution' is related to the solution(s) obtained by the linear programming

approach as proposed by Mangasarian. Here, we should point out that all




the lincar complementarity problems, which are listed in Table 1 of [7] to be
solvable as llnear programs, satisfy conditions (M1) - (M3). Therefore the
least-clement theory developed in the present report is applicable to all of
them. However, it may not necessarily be applicable to those problems
satisfying the more gencral conditions in Theorem 1 of [7].

It would be appropriate for us to review some of the essential results
obtained in [ 2] for the particular case c = 0. Using the same notations,
we denote problem (1.2) by the triple (p,q,M) and by C the class of
square matrices M for which there exist Z-matrices X and Y such that
the following two conditions are satisfied
(C1) MX =Y
(C2) : rTX + sTY >0 forsome r,s>0.

These are precisely conditions (M1) ~ (M3) with ¢ = 0. The following
proposition is an immediate consequence of the well-known theorem of

Kuhn-Fourier [4] on the solvability of a system of linear relations.

Proposition 1.1. Let X and Y be n Xn matrices. Then the following

are equivalent

(Cc2) rTX + sTY> 0 for some r,s >0
u>0

(c2)! ; Xu<o0 =>u=0,.
Yu <0

We have established useful necessary and sufficient conditions for

two Z-matrices X and VY to satisfy condition (C2). These are stated below.




Lemma 1.2, let X and Y be Z-metrices of the same order. Then (C2)

e

holds if and only if there exist a principal rearrangement with permutation

matrix P and a partitioning of X and Y such thot

T Xll le T Yll YIZ
(1.3a) POXP = , PYP=
21 22 YZI YZZ
ST
(1.3b) is a K-matrix . g
21 YZZ

Using this lemma, we have given necessary and sufficient conditions

for MeC.
Thecrem 1.3. Let M, X and Y be n Xn matrices with X and Y
both Z-matrices. Then
(C1) MX =Y
T. T
(c2) rX+s'Y>0 for scme r,s>0
if and only if there is a principal rearrangement and partitioning of M, X

and Y such that

Y
Mll M]Z X11 X12 11 YlZ
( i 46) =
Nt
MZI MZZ XZI XZZ Y21 22
X X
= 11 12 ‘
(1.4b) is a K-matrix
Y21 YZZ
(1.4c) X is nonsingular .

%
A K-matrix, also known as Minkowski matrix, is a Z-inatrix with a non-
negative inverse.




; ; The above-mentioned least-element result for the lincar complementarity
problem (g, M) with M ¢ C is stated in the thcorem belew.
' lho_;cic_m___l__.;t. Llet Me¢C andlet X and Y be Z-matrices satisfying
(C1) and (C2). Suppose (q,M) is feasible, i.e. X(g,M) # ¢. Then
the polyhedral set
V={veR" :Xv>0, q+Yv>0)
contains a lcast element v. Moreover, the vector X = XV solves the
problem (q, M).
As a consequence to this theorem, we deduced that for every vector
q € Rn, the linear complementarity problem (q, M) with M ¢ C can be
solved as the linear program (p, g, M) where the vector p is the (unique)

solution to the system of egquations

for some pocitive vector f. We have also shown that the vector p
required in Mangasarian's theory can be obtained in precisely the same

way. In the last part of the report, we established several related matrix-

theoretic results, and demonstrated that C includes all the matrices

investigated by Mangasarian in [ 6].

We explain the notations used in the paper. All vectors and matrices
under consideration are real. A Z-matrix X is said to be a Ko—m

if (X + el) is a K-matrix for every € > 0. The letters 2, Ko and K

will also denote the class of 2-, KO- and K-matrices respectively.




Various characterizations of K- and Ko-matriccs can be found in [ 3].
We denotc the range space of a matrix A by ®(A), i.e. ®(A) consists
" of those vectors which can be represented as lincar combinations of the

columns of A. Let M bean nXn matrix. If I,JC{l,...,n},

we define

11 1t
W= :
1]
m, m
L sjl SJU
Shiiiise o cediin My o ol i S DR ICE ORI
where I {11, ,13} and J UI’ ’]t} with 1_11 i <n

and 1 <j <-:+« <j <n. In particular, M is a principal submatrix

1 t 11
T
of M. Similarly, if q ¢ Rn, we define q; = (q1 yeeea Gy )". We denote
T 1 S
t} tion vector (1,...,1)" by e.




2. CONNECTION WITH LEAST LiLMENTS

2.1. Gencral discussion. Let g be ann-vectorand M an n Xn

matrix satisfying conditions (M1) - (M3) for some Z-matrices X and Y,

and some non-negative vecters r, s and c. Throughout this section,
these vectors and matrices are assumed to possess the properties just
mentioned. We shall develop a least-element study of the linear
complementarity problem (q, M) with such a vector ¢ and matrix M.

As a consequence of our investigation, we shall establish a least-element
interpretation for the result obtained by Mangasarian [ 7] of formulating

such a linear complementarity problem as the linear program (p,qg, M) with
p=r+ MTs. We start by proving a lemma which strengthens condition (M3).
Lemma 2.1. Let c, r and s be non-negative vectors and let X and

Y be Z-matrices. If condition (M3) holds, then

(M3)! r+s>0.

Proof: It suffices to show that for every i =1,...,n, r, = 0 (s, = 0) => si >0
(ri > 0). So assume £ e 0, say. Then

0 < (rT(X +C) + sT(Y + C))i

Z r,X,i + L s ¥ +s5(Y %¢)
(g I Tl it i

< Sy e .
= 1( ii 1)

Thus s, > 0. Similarly, we may deduce [Si =0 0]. Therefore

(M3)' follows. 01

- -




Remark. Condition (M3)' was referred to ¢s a special case, bul not us a

consequence of (M3) in [7]). In fact, if ¢ >0 (as in Corollary 1 of [7]),
the two cenditions arc equivalent.

We recall that if M ¢ €, the matrix X satisfying (C1) and (C2)

must be nonsingular (Theorem 1.3). The following example illustrates

that there can be singular matrix X satisfying (M1) - (M3).

1

Example 2.2. Let q = (—2) and M = ( l). The problem (g, M) has

= =i =
forlia 3/2 2 _ =1 =1 N
two solutions, namely, (1/2) and (0). I X = 0 0), ¥ = (0 _;),

1

0
r"(l)ys‘(o

¥ Yand G = (;), then conditions (M1) - (M3) are satisfied.
Nevertheless, X is singular. Moreover, it is not hard to verify that M {C.
The fact that there exist such singular matrices X indicates that
in order to develop a least-element theory for the linear complementarity
&GBWQQ,M), one should not merely concentrate on the range space
of X. In fact, the same example above shows that R(X) N X(q, M) = ¢.
Later in our discussion, we will see that this latter relation always holds
if X is singular and the stronger condition (C2) is imposed (see
Proposition 2.26 and the remark following it).
It is clear that if M ¢ C, then conditions (M1) - (M3) are satisfied

for every vector q. Nevertheless, if a matrix M satisfies (M1) - (M3)

for some vector q, it does not necessarily follow that M ¢ C. Example 2.2

illustrates this fact. The following provides another example.




Example 2.3, Let q = (_i) and M = (-; _;). Then conditions (M1) - (M3)
e =0 e _ 0 C =10, 30
are satisfied with r —(1), s (0), c = (2), B o 2 and Y= (_l O).
i € M
We show M { C. Suppose not, thcn there exists ( | ¢ Z such that
-X o
21 22
- - - - +
3R L TR 7 e R TR
= € 2
2 =1 N> + - -
LI %ay %33 ! AR P
X = =Xl X, kX
and (rl,l‘z)l_x“ x12 ) t (sl’ 52)( Zx“ i le —ZYLI Z xZ& >0 for
%2y 22  § S | “12 22
some ncn-negative scalars rl,rz, sl and S,e It follows that 2x11 + x_,l <0
i i i < -= < 0. Simi < i i
which implies x11 -3 Xy = 0. Similarly, X 2 t Xy S 0 implies
X55 < RIP < 0. Therefore Lemma 1.2 implies that
- - +
( Tt oy e S5 s
€ K.
+ - —
o i e T
-X_ =X X +x
2
In particular, det(ZX11 - le _ZXIZ i XZ >0. Since det M <0, it
11 21 132 22
followe that
) S
(2.1) det = ol e < O R
X21 x22 Z2 P22
Furthermore,
+ <0 => <-%_.<0.
e S e i e T
< - < 0; > icti
We have shown that X5 x12 <0; thus x“x22 22 Alelz contradicting
(2.1). Therefore (-; e - )




The above examples illustrate that the present class of linear

complementarity preblems (g, M) with q and M satisfying (M1) - (M3)

s a genuine extension of the previous class of problems (g, M) with

M ¢ C. Example 2.3 was used originally in [ 7] by Mangasarian for
another purpose.
2.2. The set U. We define
n T

U= {ueR :u>0, Xu<0, Yu<0,cu=1}.
This polyhedral set % plays a very important rcle throughout our whole
discussion. It may be empty, for example, if ¢ = 0 as in the case of
M ¢ C. The following example illustrates that it can sometimes be non-

empty as well.

0 3 4 -2
Example 2.4. Let M=(1 =1 0) and qz‘ 0}. Then with ¢ = s = g,

== 1
-1 =2
=0, X==1 and ¥ = (-1 1 0) , conditions (M1) ~ (M3) are
- 0 2
12/5
satisfied. In this case, u = 2/5) e Y. We shall say more about this
1/5

example later. O
The proposition below describes the relationship between vectors
in % (if any) and solutions to the linear complementarity problem (q,M).

Proposition 2.5. If ue?%y, then x = -Xu is a solution to (q, M).

Proof: If x = -Xu where u ¢, then x> 0; moreover,

«10=




q+ Mx = q~- MXu

g
q-(Y+qgc )u

I

-Yu >0,
i.e. x e X(q,M). We also have

0 < rTx + sT(q + Mx)

== TX+sTY)u_§0 :

Therefore, foreach i =1,....,n,

rX = si(q + I\/Ix)i =G,
If X, >0, say, then E = 0. Condition {M3)' implies s, > 0 which
gives (q + Mx)i = 0. Therefore the vectcr x defined abcove solves the
problem (q, M). 0
Remark 1. In the proof above, the assumption that X and Y are Z-matrices
is required in order for condition (M3)' to be applicable. Therefore, if
condition (M3)' holds by itself (as in Corollary 1 of [7]), then the
proposition is valid for any matrices X and Y (which are not necessarily
Z-matrices) satisfying conditions (M1) and (M2).
Remark 2. The feasibility of the problem (q, M) is not a requirement,
but a consequence of Proposition 2.5.

Proposition 2.5 shows that if the set % is nonempty, then a

solution to the linear complementarity problem (g, M) can be obtained

by first f[inding any vector u in %, or equivalently, solving the system

of linear inequalities

-11_
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u>0, Xu<0, Yu<0 and cru =1

and then setting x = -Xu. The question of whether % is nonempty is
itself answerable by linear programming. The next proposition shows
that if % 7 ¢, then any vector x such that x = -Xu for some u €Y
actually solves the linear program (p,q,M) where p =r1 + MTs.

Proposition 2.6. If u <%, then X = -Xu solves the linear program

(p,q,M) with p=r +MT5.
Proof: If x ¢ X(q, M), then

T
pTx =y 4 sTM)x > -qu :

On the other hand, the proof of the last proposition shows that

X = -Xu ¢ X(q,M) if U e?%. Furthermore, with such an X, we have
A T
pTx = -(r” + sTM)XU
= -(rTX + sTY)E - qu = -qu .
Therefore, any such X solves the linear program (p,q, M). |

Corollary 2.7. If M is nondegenerate (i.e. every principal submatrix

of M is nonsingular) and if ¥ # ¢, then the linear program (p,q, M)

with p=r+ MTs has a unique solution X. Furthermore, X = -Xu for
every u e Y.

Proof: That the linear program has a solution x follows from Proposition 2. 6.
To 'show its uniqueness, let x be a solution to (p,q, M). Then the

proof of Proposition 2. 6 shows that, in fact,

rTx = sT(q + Mx) = 0.

]2




>0} and J= {1,...,n\l, then x must nccessarily

e :
1 {1 r
satisfy the following system of equations

0 I 0 X

(2.2) + =00

Gpk SpMp Mg %

Here we have used the fact that sI >0 by (M3)'. By the nondegencracy

of M, the system (2.2) has a unique solution. This establishes the
unigueness of X. The last counclusion of the corollary is immediate. i
Remark. The matrix M in Example 2.4 is degenerate; nevertheless, the

proof of the corollary shows that any solution to the linear program (p, g, M)

must satisfy q + Mx =.0. Since M is nonsingular, the LP-solution

2/5

Ll ( 2;5) is unique. This solution was also obtained in [ 7] by actually
1/5 )

applying the simplex method to the linear program. Its uniqueness was

not proeven there.

The results above establish the relationship between vectors in Y,
solutions to the linear complementarity problem (g, M) and solutions to
the linear program (p,q, M). In the sequel, we divide our discussion into
cases. In each case, we shall construct a polyhedral set having a least
(or greatest) element and demonstrate how a sclution to the linear comple-
mentarity problem can be generated from this element. In the analysis, we

shall need two fundamental results from lattice theory. These are stated

in Propositions 2.9 and 2.10. Their proofs are easy and are omitted.

=13




Definition 2.8. Let S be a subsct of Rn. Then S is said to be a

meet (join) semi-sublattice (of Rn) if for every s,t ¢ S, the meet (join)

of s and t, defined as the vector u = (u,) where u, = min(si,ti)

i i

(max(si, ti)) for every i, belongs to S. The set S is bounded below
LS %
(above) if there exists a vector s e R® such that s >(<) s for every

s € S.

Proposition 2.9. The following are equivalent:

1) L is a polyhedral meet (join) semi-sublattice of g

n
2) L={seR :As>b} for some matrix A and vector b, with A
having at most one positive (negative) element in each row.

n
Proposition 2.10. Let L be a nonempty meet (join) semi-sublattice of R'.

If L is closed and bounded below (above), then L has a least (greatest)

element. Furthermore, this element can be obtained by solving

(2.3) minimize (maximize) fo subject to x ¢ L
for any positive vector f.

We should also mention that a least (greatest) element of a meet (join)
semi-sublattice L of Rn actually solves the program (2. 3) for any non-
negative vector f and it is the unique solution if f is positive.

In the theorem below, we describe a polyhedral set with a least
element and show how this element can easily generate a solution to the

problem (g, M) in the case % 7 ¢.

_—




Theorem 2.11. Define

n
T=0 {ucR":u<0, Xu>0, Yu>0, ciui?.-l}.
i=1

£
Then J has a least element u. Furthermore, if % # ¢, then c u<-1

= u
and the vector x = -X(——

T
cu

solves the linear complementarity problem (g, M).

Proof: Proposition 2.9 implies that J is a meet semi-sublattice of Rn.
It is obviously closed and nonempty because o ¢ 3. We show that J
is bounded below. Let u ¢ J, clearly ui > —l/ci for every i el

where I = {i tc, > 0}. Furthermore, letting J = {i e = 0}, we have,

2. > - =

(2. 4a) XHUI > XJIuI k- XJIdI

and

(2. > - =Y

(2. 4b) ¥z ol s oY d

where d = (di) is the vector with di = --l/ci for i €I and o other-

wise. On the other hand, it follows from condition (M3) that

rTX +sTY >—(rTX +s;rYI

- S il R F 20

b

J

i.e. the Z-matrices XH and YH satisfy condition (C2). Therefore by ;

X”
Lemma 1.2, the matrix (Y'
1]

is Minkowski. This fact, together with inequealities (2. 4a) and (2. 4b)

contains a complementary submatrix which

implies that uI is bounded helow by some constant vector. Hence J is

bounded below. Therefore it has a least element u by Proposition 2.10.

15~




Clearly -u¢J if u ¢ Y. Thus, —u._<_ -u for every u ¢ Y. Hcnce

cTUS -1 if Y7 ¢. Itis then clear that —.1“ ¢ Y. Therefore the last

asscrtaion of the thecorem is an immediate consequence of Proposition 2. 5.
Remark. The assumption % # ¢ is essential in order for the vector X

in the theorem to be well-defined, because otherwise, cTU might be
zero (e.g. ¢ = 0).

Example 2.12. Consider the problem (gq,M) in Example 2.2. We have

u= {3} and

3= {( 1)fRz:u =0 and ~2<u, <0} .
u 1 2
2
: 0
The least element of T is (_2).

1\

o

X(q, M)

This is the solution
obtained in Theorem 2.11.
It is also the unique solu-
tlon to the linear program

/ 0) py q’ N)'
Both are solutions
to (q,M).

Fig. 1. U+ ¢.

"l()"




" linear program (p,q, M) is given by the vector X = -X -Y-  where T

Combining Theorem 2.11 with Corcllary 2.7, we conclude that if

M is nondegcnerate and if % 7 ¢, then the (unique) solution to the

Jils
cu
is the least element of J. This result vrovides a least-element interpreta-

tion to the solution of the linear program introduced by Mangasarian.

2.3. The case where % = ¢ and X is nonsingular. Having completed

our discussion of the case U # ¢, we proceed to investigate the case

% = &. We establish the following important lemma.
Lemma 2.13. If % = ¢, then the following implication holds
u>0 :
(2.5) Xu <0 =>u=0.
Yu <0
Proof: Suppose there exists a nonzero vector u such that u>0, Xu <0
and Yu < 0. Then we must have cTu = 0 because otherwise '%‘ €Y

c W
contradicting the assumption. Thus, Cu = 0. Hence,

0 < [rT(X +C) + sT(Y +C)Ju
< (rT + sT)Cu =0
which is a contradiction. 0
In fact, the converse of Lemma 2.13 holds, namely, if (2.5) holds,
then % = ¢. Now, by Proposition 1.1, condition (2.5) is an equivalent
formulation of condition (C2). Therefore, adding the assumption Y = ¢

to (M1) - (M3) is actually equivalent to replacing conditions (M2) and (M3)

by the single stronger condition (C2).




Corollary 2.14. Let % = ¢. Then

"

T
u/0, Xu=0=>cu+0.
Proof: Indecd, if there exists a nonzero vector u such that Xu = 0

and cTu = 0. Then it follows from (M1) that Yu = 0. But this is

impossible because by Lemma 2.13 above and Lemma 1.2, the matrix ();)
contains a nonsingular complementary submatrix; this latter fact implies
u = 0, contradicting the assumption. O

We have given an example earlier illustrating that there can be
singular matrix X satisfying conditions (M1) - (M3). The proposition
below shows that if % = ¢, such matrices have rank at least n - 1.

Proposition 2.15. If % = ¢, then rank(X)>n - 1.

> 2
Proof: Supposc rank(X) <n + 1. Let u1 and u be two linearly

2 1 T2
independent vectors such that Xu1 = Xu =0 and ¢ u1 =cu = l.
The existence of these vectors follows from the assumption and Corollary 2.14.

We then nave

2
Yul + q(cTu]) = Yu2 + q(cTu JE=S 08

Thus,

1_ 2

]
o

Y(u

But we also have

[}
[ =4
1}
o

] 2 ; : . 1 2
Therefore, u = u". This contradicts the linear independence of u and u . j
It {s clear that there are instances when X is nonsingular, e.g.

¢ = 0. The example below indicates that the case where rank (X) = n = 1

-




is also possible even if % = ¢. Later in our discussion, we shall provide

—":"'““’T“

necessary and sufficient conditions for X to be nonsingular (see Theorem 2.22).

X 0
Example 2.16. Let ¢ = (_(1)) and M = (-—l :). The problem {(q, M) has
g i T Ty
a solution (1). Now let X = (O o Y = (0 l)’ eli=te i (0) and |

S = ((1)). Then MX =Y +ch and rTX + sTY> 0. Therefore Y = .
Nevertheless, X is of rank 1. 0

In the sequel, we shall first establish the least-element results
for the case where X is nonsingular. Then we shall prove two characteriza-
tion theorems having to do with the nonsingularity of X. Finally, we
shall investigate the last case, namely, where ‘X has rank n - 1.

If X 1is nonsingular, then the linear coﬁplementar1t)' problem (g, M)

is equivalent to the following complementarity problem (LECPI):

a(1 +cTu)+YuZO, Xu>0 and [q(1 + cTu) +Yu.]TXu =)
The equivalence is based on the transformation x = Xu. Itis clear that
x 1is a (feasible) solution to the problem (q,M) if andonly if u = X_lx

is a (feasible) solution to the problem (LECPI). Let 31 denote the

feasible set of the latter problem, i.e.

31 = {UeRn:q(l+cTu)+YuZO, Xu>0}.

Proposition 2.17. If % = ¢, then 1 + cTu £0 for every u e :}1.

Proof: Suppose there is a u e 31 such that 1 + cTu = 0. Then it follows
that Yu > 0, Xu > 0. Since the matrix ();) contains a Minkowski comple-
mentary submatrix, we must have u >0 contradicting the assumption that

l+cTu=0. m}

-19-




By the convexity of :}l it follows that one and only one ot the
following two statements must hold:

(2. 6a) 1+ cTu >0 for every u e 81

(2. 6b) 1 +cTu <0 forevery ue 81 :

Lemma 2.18. Let ¥ = ¢ and 3 # ¢. Suppose (2.6a) ((2.6b)) holds. Let

%

{(veR :q+Yv>(<) 0, Xv > (<) 0) .

Then .&l has a least (greatest) element v satisfying clv <'(>)1.
Furthermore, (q + YG)T(X\?) = 0
Proof: Proposition 2.9 implies that .&1 is a meet (join) semi-sublattice

X
) contains a Minkowski

of K. Bis obviously closed. The fact that (Y

complementary submatrix implies that .&1 is bounded below (above). We
T "

show that it is nonempty. Let u e 3’1 satisfy 1 +c u>(<)0, then

it is not hard to see that the vector

(2.7} v = =

Ik cTu

belongs to .&1. By Proposition 2. 10, jl has a least (greatest) element V.
That Vv satisfies cTV <(>)1 1is clear because Vv <(>)v and ch <(>)1
where v is the vector defined in (2.7). To show that v satisfies the
complementarity property, we refer the reader to'the proof of Lemma 3.10

in [ 2]. 0l

Remark. The polyhedral set .91 does not depend on the vector c. If

(2. 6a) holds, this set .&1 is precisely the set V mentioned in the introduction.
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The following result generalizes Theorem 1.4 pertaining to the
problem (q, M) with M ¢ ¢ which corresponds to the case ¢ = 0.

Theorem 2.19. Let % = ¢. Suppose X is nonsingular and the problem

(g, M) is feasible. Then the vector

T_
L =uC V

(2.8) X = x(

where Vv is the vector obtained in Lemma 2.18, is a solution to the
linear complementarity problem (gq,M).

Proof: In fact, if x ¢ X(q, M), then u = X-lx € 31. Therefore the
vector v is well-defined and so is u = _____v____ . It is easy to show
=

that u solves the problem (LECPI). Therefore by the eguivalence of
the problems (q,M) and (LEC_?PI) mentioned earlier, it fcllows that the
vector x defined in (2.8) solves the problem (g, M). 0

Theorem 2.19 shows how, under the assumptions in the thecorem, a

solution to the linear complementarity problem (g, M) can be generatea g
from the least (or greatest) element of the polyhedral set .&l. One '
t |
i
notices that in some instances, the linear complementarity problem has a {

solution generated from the greatest element of a polyhedral set. This }
may seem, at first glance, somewhat inconsistent with the title "A least- E
element theory ...'" of the report and with the phrases 'least-element
solutions", 'least-element characterization", etc. ... which have been

used throughout the report. However, it is not hard to sece that such

=2}=




greatest-element results can always be changed into least-clement results
by a very trivial modification, namely, by considering the negative of

" the polyhfedral sets having the greatest elements. We have not made this
change of variables in Lemma 2.18, and will not do so later because we
want to present the results in their most natural format.

In the sequel, we establish a relationship between the vector x
generated in Theorem 2.19 and the solution(s) to the linear program
(p,q,M) with p=r+ MTs. Specifically, we show that X solves any
such linear program; moreover, it is the unique solution if the vectors r
and s satisfy the stronger condition (C2).

If X is nonsingular, then under the nonsingular transformation,

x = Xu, the linear program (p,qa, M) is equivalent to

(2.9) minimize (pTX)u subjectto g+ MXu >0 and Xu>0.
Noting that

pTX = (" + sTM)X = (rTX + sTY) + (qu)cT
we may write (2.9) as

i il
(2.10) minimize (r'X + s Y)u + qu(l + cTu) subject to u e Zil .

In order to simplify the following discussion, we assume that (2. 6a)

holds. Since Vv is the least element of .&1, it solves the linear program
T .
(2.11) minimize f v subjectto v e .&1

for any nonnegative vector f, and it is the unique sclution to (2.11) for

any positive vector f. Itis then easy to deduce that the vector

.y -




« 5 m

= v ) :
(2.12) b=~ (or equivalently, ¥ = ——= )
d e —
l=-¢c WV Ik Aol
solves the ([ractional) program:
fTu
(2.1 3) minimize ———— subject to u e 3!
1 e
for any nonnegative vector f, and it is the unique solution to (2. 13) for

any positive vector f.

Theorem 2.20. let % = ¢. Suppose X is nonsingular and (g, M) is

feasible. Then the vector X (defined in (2.8)) solves the linear program
(p,q,M) with p=r+ MTs. Moreover, it is the unique solution to any
such linear program with rTX +5 XY >0.

Remark. This theorem is valid no matter which one of the two inequalities
(2. 6a) and (2.6b) is valid. To simplify the proof below, we continue to

assume (2. 6a) holds.

Proof of the theorem: It suffices to show that the vector u (defined in

(2.12)) solves (2.10) and u is the unique solution toc (2.10) if

T :
r X+sTY>O. Let uesl, then "-—U—T“'(..B . Thus
1 &2 SAE!

(rTX + sTY) -4 < (rTX + sT‘{) s

l1+4cu 1+cu

which implies

R
i t+tc u

N T i
(2.14) (rTX+ sTY)u + qu(l +cTU) f[(rTX + sTY)u +sq(1 +cu)]
) S Ao
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Furthermore, we have

= u u
= <
s T_ = T
1 +cu 1 ¢ u
Hence,
1_+cTU<l
1+cTu_

On the other hand,

’ i T
(rTX + s'IY) u+sq(l+ cTu) = rT(Xu) + sT(q + (¥ +gc ) 20 .
Therefore, for u 6.31,

(rlx + sTY)E'+ qu(l + CTU) < (rTX + sTY)u + qu(l 4 cTu)

i.e. u solves (2.10).
Conversely, if u solves (2.10), then (2.14) must hold as equality.
Therefore, we have
(rTX + sTY) ——‘U—-T— = (rTX + sTY)
1 +¢cu P fecwu

i.e. u also solves (2.13). Now if rTX + sTY >0, it follows from the

uniqueness of U that u = u. 0

Example 2.21. Let q = (__i) and M = (-; i). The problem (q, M) has

y 1 0 _,~3 0 SE S . 40 o |
solutions (0) and (1)' If X=¢ 0 2), Y = (_1 4), £ = (1)’ § = (0)

and c¢ = (g), then MX =Y + ch and rTX + sTY > 0. Itis not hard to

show that M { C.

B




2X_ +X_=
1 1

LURLEL

(0,1) X(a, M)

This is the solution given by
(2.8) in Theorem 2.19.

Fig. 2. %4 = ¢ and X nonsingular.
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Before proceeding to study the case rank(X) = n -1, we prove

two thecorems. The first of which characterizes the nonsingularity of X
whereas the second provides necessary and sufficicnt conditions for

(2. 6a) and (2. 6b) to hold. As a consequence of the theorems, we deduce
that the assumptions in Lemma 2.18 and Theorcm 2.19 are actually

equivalent.

Theorem 2.22. The following two conditions (2.15) and (2.16) are equivalent:

(2.15) X 1is nonsingular
(2.16) there exist a principal rearrangement, with permutation matrix I,

and partitioning of X, Y, 9 and c such that ‘

% TR 4 Y1 {12\
(2.16a) P XP = , P YP-= ;
501 Tap T ol
T i T 1
(2. lbb) Pq-= q . Pic = 9
2 2 !
; 3
) s '
: (2.16c) xll and \YZZ 21)(11}(12) are nonsingular
T T,-1 ey
. ‘ - X 20 .
(2.16d) 1+ (c, = e X X Y5, = Yoy %y 12 9

Proof: That (2.15) implies (2.16) is trivial. For the converse, it suffices

-1 ;
i - is lar. We h
(see [1]) to show that the matrix X22 XZIXI lxlz is nonsingular e have

i Y
Mo, M\ %2 Yo 42 =

i Y
i My, My % %y Yo, Y22 q,°

-

,“___r_,,_._—-..,v,.‘.w._




Solving for MZl in

X + =
Mo X1 T MK, = Y, 9,5

gives
-1 T.-1
M. = +
21 = (Y = My X, )X | +a,6 X))

Substituting this latter equality in

T
+ &=
M; X2 ¥ M, X5, = Yo, 14,5,
yields
T P e BT R )+q(c vk 1%
22*¢z T2l 312 22 a2 2 1711712
)71 LA
= Y X +
(Y5, - 21x11 1201 (Y, Y21X11x12 q,(c, 111 X,
Condition (2.16d) implies
det[I + (Y, - )" q (cT- )]
22 211112 2 11112
" S =1 E
=13 (e, °1X11x12)( =Y %1529 7 0
. . : . -1 :
This establishes the nonsingularity of X22 Xlellle' &

Remark. The argument used above is a generalization of the one in

Theorem 1.3 for the case M ¢ C. In the proof, we have used the

condition (M1) only. So in fact, the theorem provides necessary and
sufficient conditions for the matrix X (not necessarily Z-matrix) satisfying
MX = Y+ ch for some matrices M and Y (not necessarily Z-matrix)
and some vectors q and c¢ (not necessarily non-negative), to be

nonsingular.




Theorem 2.23. Let % = ¢. Supposec :}1 # ¢. Then (2.6a) ((2.6b)) holds

if and only if there exist a principal rearrangcinent with permutation matrix

P, and partitioning of X, Y, ¢ and ¢ such that

. T Xll le T Yll ¥
(2.17a) PXP = X X s PAR s v v
21 22 21 22
T . T “
(2-l7b) P q = " P e = a
9% 2
X
11 le
(2.17¢) € K
YZI Y22
T T..~1 =}
{2.174) 1+ (ey = 6)X) X )0Y,, = ¥y X X 5)9, > (90
Proof: ''Sufficiency'. Let u e :F] . Then we have
0 X X u
" # 11 12 1 >0.
qz(l +cu) Y21 Y?_2 u,
xll XlZ e
Condition (2.17c) implies that > 0; thus
Y Y
21 22
-
X
xll 12 ’

(2.18) (l+cTu)+u_>_0.

Y Y22 9,

t1
Let t=( ) satisfy
*

X1 %2\l 4 ( ’ \

21 22 2

|
l
|




Then,

. s "Ii";z 2
and,
ty = (Yp YZIXIIXIZ) lq2 :
We can write (2.18) as
t(1 +cTu) +u>0
which implies
(2.20) (1+ <1 + cu) 2.

Now, by condition (2.17d)

T EUL L
e » X
(2.19) l1+ct=1 +(c2 clx“ 1?_)tz

"

T .T -]
= < .
1 +(c, °1x11X12)(Y2 Y21X11x12) q, >(90

n

Therefore 1 + cTu > (<)0 for every u ¢ 81, i.e. (2.6a) ((2.6b)) holds.
"Necessity''. The existence of the permutation and partitioning such that
conditions (2.17a) - (2.17c) are satisfied is an immediate consequence
of the assumption % = ¢ and Lemma 1.2. So it remains to verify (2.17d).
The deduction above shows that (2.20) is valid for every u e 31. Now
if 31 # & and (2.6a) ((2.6b)) holds, then it follows from (2.20) that
1+ cTt > (<) 0, or equivalently, (2.17d) holds. 0

We have seen that if X is nonsingular and if the problem (q, M)
is feasible, then 31 # ¢. Combining Theorems 2.22 and 2.23, we
conclude that if % = ¢ and if :}1 # ¢ then (q,M) is feasible (in fact,

has a solution) and X must be nonsingular.
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Corollary 2.24. If Y = ¢, the following are equivalent
(2.21) X is nonsingular and (g, M) has a solution (given by (2. 8))

(2.22) 31 +é.

2.4. The case where % = ¢ and X is singular. In the rest of this

paper, we investigate the remaining case, namely % = ¢ and rank (X)

0
=n-1. Let u be the (unique) vector satisfying

0 TO
Xi =0 and cu =1.
The existence of such a vector follows from Corollary 2.14. Then, it
follows that

(2. 23) q = -Yuo .

Let u1 be a nonzero vector satisfying XTu1 = 0. It follows from
elementary linear algebra that, for any x e Rn, there exist u ¢ R?
and a ¢ R1 such that
(2.24) X = Xu + a(u1
Under such a representation, we have, by (2.23)

q+ Mx = q+MXu+arMu1

q(l + cTu) + Yu + arMu1

= Yu-(1+ cTu)uo] + arMul ;

problem (g, M) is equivalent to the problem (LECPZ) of finding a vector

i u e Rn and a scalar a such that

Proposition 2.25. Under the identification (2..24), the linear complementarity




aMu’ + Y{u~(l+ cTu)uo] >0
T 0
au’ + X[u - (1 +r:1u)u ]>0
[_arMul + Y(u - (1+ c’l‘J)uO)]T[aul + X(u - (1 + cTu}uO)] O

Let 32 denote the feasible set of (LL‘CPZ), i.e.

+1 0

F_= {(:)e R :onul +Y(u-(_1+cru)u0) >0 aul+X(u—(l+cTu)u } >0},

2

Proposition 2.26. If % = ¢, then a # 0 for every (2) € 32.

Proof: Suppose there exists (:) € 32 such that a = 0. Then

Y{u - (1 +cTu)u0] >0

X{u-=-(1+ cTu)uO] >4,
i o Tl
Hence, by Lemma 1.2, it follows that u = (1l +c'u)u > 0. Thus

0 < cT[u -1+ cTu)uO] = -1
which is a contradiction. |
Remark. An equivalent formulation of the conclusion in Proposition 2.26
can be stated as X(g, M) N R(X) = ¢.
By the convexity of 32, it follows that one and only one of the

following two statements must hold:

(2.25a) a >0 for every (2) <3,

(2.25Db) a <0 for every (2) €3, -
Lemma 2.27. Let % = ¢ and 32 # &. Suppose (2.25a) ({2.25b)) holds.

Define

Jz = {v e R" Mul +Yv > (2)0, u1 +Xv >(<)0} .




- s :
Then .3«2 has a least (greatest) element Vv satisfying ¢ v <(>)0.

1 T, .1

Furthermore, (Mu + Yv) (u + Xv) = 0.
: u 1 a0 i 1
: Proof: If (a) € 32, then v = ;(u -(l+cuu) ¢ .52 and c'v=-7_.
; The rest of proof proceeds in the same way as in the proof of Lemma 2.18. U

1 Theorem 2.28. Let %Y = ¢é. Suppose rank(X) = n -1 and the problem

(q, M) is feasible. Then the vector

(2. 26) % -.—;‘—(XV+ul)
cv

where v is the vector obtained in Lemma 2.27, is a solution to the linear

complementarity problem (g, M).

Proof: The assumptions in Lemma 2.27 are satisfied. Therefore, X is

v e 1 -
and a = - _T solves
lo} c v

the problem (LECPZ). Noting that 1 + cTﬁ = 0, we can easily deduce

well-defined. It suffices to show that u = -

ol
<|

that (g) indeed solves (LECPZ). This establishes the theorem. O
Having demonstrated how, under the 1?ssumptions of Theorem 2.28,

a solution to the linear complementarity problem can be generated from the

least (or greatest) element of the polyhedral set .&2, we next establish

a relationship between this solution X and the solution(s) to the

linear program (p., q, M) with p=r+ MTs.

Theorem 2.29. let % = ¢. Suppose rank(X) =n-1 and (q,M) is

feasible. Then the vector x (defined in (2.26)) solves the linear program

(p,q,M) with p=r+ MTs. Moreover it is the unique solution to any

such linear program with rTX + sTY > 0.

.




Proof: Assume for simplicity, that (2.25a) holds. The argument which
follows is similar to that of Theorem 2.20. Let x = Xu + aul ¢ X(gq, M)

0
then v="(u-(l+ cTu)u ) ¢ &.,. Hence we have

R =

which implies

cTV < = 1
@
Moreover, by (2.23),
(2.27) (er + sTY)-\7_<_ i(rTX + sTY)(u - (1 + cTu)uO)
% ‘é[(rTX + sTY)u 4 qu(l + cTu)} .
Furthermore,

rT(Xu + aul) + sl[q + M(Xu + aul)] 20

Combining the above inequalities, we deduce,

TR = (rF + s M)(- 5= (X7 +u))
c v

== “1—‘[(rTX + sTY)V + qu(cTV) + (rT - sTM)ul]

T
c'v
= —}I‘_[%{( %4 sTY)u + a(rT + sTM)u1 + STQ(l + CTU)}] - s
c v
c (- AT + ) + 5T + MO + 2] - 5T
eV

< (rT + sTM)x = pTx ;

Therefore X solves the linear program (p,q, M).

-33~
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Conversely, if x is a solution to (p,q, M), then we must have

T T e
equality in (2.27). If r' X+ s Y >0, then by the uniquencss of v, it

=" T 0 5
follows that v = “%(u -(l+cuu). Thus a = - _1— and Xu = - —}I‘_ Xv.
: c’Vv cv
Therefore, x = Xu + arul = - _lf"(XV + ul) = . This establishes the
cv

theorem. 0

We conclude this paper by proving a result (Corollary 2. 31) which
strengthens Corollary 4 of Mangasarian's report [ 7] where it was shown
thatif n >3 and M is a positive matrix which is diagonally dominant

column-by-column, that is, m,. > Z mU, j =1,...,n, then conditions
i#j

(M1) - (M3) are satisfied (in fact for every n-vector q).

Proposition 2.30. Let M be an n Xn matrix satisfying

(2.28a) MX = Y forsome X,Ye?2Z

(2.28hb) rTX >0 forsome r>0

(2.28c) ¥ = (Yij) is such that Yij <0 forevery j#1i.
Then M € C.

Proof: Let € >0 be small enough such that Y +eM ¢ Z. Then

M(X+el) = Y+eM and X +¢ele K. Therefore M € C. a

Corollary 2.31. Let n>3 andlet M be a positive n Xn matrix

which satisfies either of the following conditions:

(2.29a) diagonal dominance column-by-column: mjj > Z m, s = 1 o0y

(2.29b) diagonal dominance row-by-row: mii > E M, b= Iy voeyls
j#i

Then M € C.




e \

Proof: We may without loss of generality, assumc that M  has been

normalized so that it has ones on the diagonal. Let M = I+ F where
= = z e > fi = -

F (F”), F“ 0 and Fi)' mi), for i #4, Define X = I'= FE ‘and

Y=MX=1- FZ. Clearly X and Y e Z. Furthermore, it is easy to

see that condition (2.28c) is satisfied. We show that (2.28b) is also i 4

satisfied. It is clearly satisfied if (2.29a) holds. Now, if (2.29b) is true,

then X e Ko (by Theorem (5.4) in [ 3]) and X is irreducible (see [8]).

(-

The se two properties of X imply (2.28b) (by Theorem {5.8) in [ 3]).

Consequently, by Proposition 2.30, M ¢ C. a
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